
Package: admisc (via r-universe)
October 17, 2024

Version 0.36.1

Title Adrian Dusa's Miscellaneous

Depends R (>= 3.5.0)

Imports methods

Suggests QCA (>= 3.7)

Description Contains functions used across packages 'DDIwR', 'QCA' and
'venn'. Interprets and translates, factorizes and negates SOP -
Sum of Products expressions, for both binary and multi-value
crisp sets, and extracts information (set names, set values)
from those expressions. Other functions perform various other
checks if possibly numeric (even if all numbers reside in a
character vector) and coerce to numeric, or check if the
numbers are whole. It also offers, among many others, a highly
versatile recoding routine and some more flexible alternatives
to the base functions 'with()' and 'within()'. SOP
simplification functions in this package use related
minimization from package 'QCA', which is recommended to be
installed despite not being listed in the Imports field, due to
circular dependency issues.

License GPL (>= 3)

URL https://github.com/dusadrian/admisc

BugReports https://github.com/dusadrian/admisc/issues

Repository https://dusadrian.r-universe.dev

RemoteUrl https://github.com/dusadrian/admisc

RemoteRef HEAD

RemoteSha 684c081836fdf4dc4ac0248f0b1cbab35660ebc8

Contents
.rda functions: listRDA, objRDA . 2
About the admisc package . 3

1

https://github.com/dusadrian/admisc
https://github.com/dusadrian/admisc/issues

2 .rda functions: listRDA, objRDA

betweenQuotes . 4
Brackets . 4
change . 6
coerceMode . 7
combnk . 8
dimnames . 9
export . 9
factorize . 10
finvert . 12
frelevel . 13
getName . 14
hclr . 15
inside . 16
Interpret DNF/SOP expressions: compute, simplify, expand, translate 17
intersection . 21
Negate DNF/SOP expressions . 23
Number equality . 25
numdec . 26
Numeric testing and coercion . 27
overwrite . 28
permutations . 29
recode . 30
recreate . 33
replaceText . 34
scan.clipboard . 36
Tilde operations . 36
tryCatchWEM . 37
using . 38

Index 40

.rda functions: listRDA, objRDA

Load and list objects from an .rda file

Description

Utility functions to read the names and load the objects from an .rda file, into an R list.

Usage

listRDA(.filename)

objRDA(.filename)

Arguments

.filename The path to the file where the R object is saved.

About the admisc package 3

Details

Files with the extension .rda are routinely created using the base function save().

The function listRDA() loads the object(s) from the .rda file into a list, preserving the object names
in the list components.

The .rda file can naturally be loaded with the base load() function, but in doing so the containing
objects will overwrite any existing objects with the same names.

The function objRDA() returns the names of the objects from the .rda file.

Value

A list, containing the objects from the loaded .rda file.

Author(s)

Adrian Dusa

About the admisc package

Adrian Dusa’s Miscellaneous

Description

Contains functions used across packages ’DDIwR’, ’QCA’ and ’venn’. Interprets and translates,
factorizes and negates SOP - Sum of Products expressions, for both binary and multi-value crisp
sets, and extracts information (set names, set values) from those expressions. Other functions per-
form various checks if possibly numeric (even if all numbers reside in a character vector) and coerce
to numeric, or check if the numbers are whole. It also offers, among many others, a highly versatile
recoding routine and some more flexible alternatives to the base functions with() and within().
SOP simplification functions in this package use related minimization from package QCA, which is
recommended to be installed despite not being listed in the Imports field, due to circular dependency
issues.

Details

Package: admisc
Type: Package
Version: 0.36.1
Date: 2024-10-17
License: GPL (>= 2)

4 Brackets

Author(s)

Authors:
Adrian Dusa
Department of Sociology
University of Bucharest
<dusa.adrian@unibuc.ro>

Maintainer:
Adrian Dusa

betweenQuotes Extract information between quotes in a string

Description

Functions to extract the between the (escaped) quotes, in a string.

Usage

betweenQuotes(x)

Arguments

x A string.

Author(s)

Adrian Dusa

Examples

x <- "An example of \"quoted\" text."

betweenQuotes(x)

Brackets Extract information from a multi-value SOP/DNF expression

Description

Functions to extract information from an expression written in SOP - sum of products form, (or
from the canonical DNF - disjunctive normal form) for multi-value causal conditions. It extracts
either the values within brackets, or the causal conditions’ names outside the brackets.

Brackets 5

Usage

betweenBrackets(x, type = "[", invert = FALSE, regexp = NULL)
outsideBrackets(x, type = "[", regexp = NULL)
curlyBrackets(x, outside = FALSE, regexp = NULL)
squareBrackets(x, outside = FALSE, regexp = NULL)
roundBrackets(x, outside = FALSE, regexp = NULL)

Arguments

x A DNF/SOP expression.

type Brackets type: curly, round or square.

invert Logical, if activated returns whatever is not within the brackets.

outside Logical, if activated returns the conditions’ names outside the brackets.

regexp Optional regular expression to extract information with.

Details

Expressions written in SOP - sum of products are used in Boolean logic, signaling a disjunction of
conjunctions.

These expressions are useful in Qualitative Comparative Analysis, a social science methodology
that is employed in the context of searching for causal configurations that are associated with a
certain outcome.

They are also used to draw Venn diagrams with the package venn, which draws any kind of set
intersection (conjunction) based on a custom SOP expression.

The functions curlyBrackets, squareBrackets and roundBrackets are just special cases of the
functions betweenBrackets and outsideBrackets, using the argument type as either "{", "[" or
"(".

The function outsideBrackets itself can be considered a special case of the function betweenBrackets,
when it uses the argument invert = TRUE.

SOP expressions are usually written using curly brackets for multi-value conditions but to allow the
evaluation of unquoted expressions, they first needs to get past R’s internal parsing system. For this
reason, multi-value conditions in unquoted expresions should use the square brackets notation, and
conjunctions should always use the product * sign.

Sufficiency is recognized as "=>" in quoted expressions but this does not pass over R’s parsing
system in unquoted expressions. To overcome this problem, it is best to use the single arrow "->"
notation. Necessity is recognized as either "<=" or "<-", both being valid in quoted and unquoted
expressions.

Author(s)

Adrian Dusa

6 change

Examples

sop <- "A[1] + B[2]*C[0]"

betweenBrackets(sop) # 1, 2, 0

betweenBrackets(sop, invert = TRUE) # A, B, C

unquoted (valid) SOP expressions are allowed, same result
betweenBrackets(A[1] + B[2]*C[0]) # the default type is "["

curly brackets are also valid in quoted expressions
betweenBrackets("A{1} + B{2}*C{0}", type = "{")

or
curlyBrackets("A{1} + B{2}*C{0}")

and the condition names
curlyBrackets("A{1} + B{2}*C{0}", outside = TRUE)

squareBrackets(A[1] + B[2]*C[0]) # 1, 2, 0

squareBrackets(A[1] + B[2]*C[0], outside = TRUE) # A, B, C

change Generic function to change the structure of an object, function of the
(changed) parameters used to create it.

Description

A generic function that applies different altering methods for different types of objects (of certain
classes).

Usage

change(x, ...)

Arguments

x An object of a particular class.

... Arguments to be passed to a specific method.

Details

For the time being, this function is designed to change truth table objects (only). Future versions
will likely add class methods for different other objects.

Value

The changed object.

coerceMode 7

Author(s)

Adrian Dusa

Examples

Not run:
An example to change a QCA truth table
library(QCA)

ttLF <- truthTable(LF, outcome = SURV, incl.cut = 0.8)
minimize(ttLF, include = "?")

excluding contradictory simplifying assumptions
minimize(

change(ttLF, exclude = findRows(type = 2)),
include = "?"

)

End(Not run)

coerceMode Coerce an atomic vector to numeric or integer, if possible

Description

This function verifies if an R vector is possibly numeric, and further if the numbers inside are whole
numbers.

Usage

coerceMode(x)

Arguments

x An atomic R vector

Value

An R vector of coerced mode.

Author(s)

Adrian Dusa

Examples

obj <- c("1.0", 2:5)

is.integer(coerceMode(obj))

8 combnk

combnk Generate all combinations of n numbers, taken k at a time

Description

A fast function to generate all possible combinations of n numbers, taken k at a time, starting from
the first k numbers or starting from a combination that contain a certain number.

Usage

combnk(n, k, ogte = 0, zerobased = FALSE)

Arguments

n Vector of any kind, or a numerical scalar.

k Numeric scalar.

ogte At least one value greater than or equal to this number.

zerobased Logical, zero or one based.

Details

When a scalar, argument n should be numeric, otherwise when a vector its length should not be less
than k.

When the argument ogte is specified, the combinations will sequentially be incremented from those
which contain a certain number, or a certain position from n when specified as a vector.

Value

A matrix with k rows and choose(n, k) columns.

Author(s)

Adrian Dusa

Examples

combnk(5, 2)

combnk(5, 2, ogte = 3)

combnk(letters[1:5], 2)

dimnames 9

dimnames Set matrix row or column names

Description

Set matrix row or column names without copying, especially useful for (very) large matrices.

Usage

setColnames(matrix, colnames)
setRownames(matrix, rownames)
setDimnames(matrix, nameslist)

Arguments

matrix An R matrix

colnames Character vector of column names

rownames Character vector of row names

nameslist A two-component list containing rownames and colnames

Author(s)

Adrian Dusa

Examples

mat <- matrix(1:9, nrow = 3)
setDimnames(mat, list(LETTERS[1:3], letters[1:3]))

export Export a dataframe to a file or a connection

Description

This function is a wrapper to write.table(), to overcome possible issues with the row names.

Usage

export(x, file = "", ...)

Arguments

x The object to be written (matrix or dataframe)

file A character string containing the path to the file to be created

... Same arguments that are used in write.table()

10 factorize

Details

The default convention for write.table() is to add a blank column name for the row names, but
(despite it is a standard used for CSV files) that doesn’t work with all spreadsheets or other programs
that attempt to import the result of write.table().

This function acts as if write.table() was called, with only one difference: if row names are
present in the dataframe (i.e. any of them should be different from the default row numbers), the
final result will display a new column called cases in the first position, except the situation that
another column called cases already exists in the data, when the row names will be completely
ignored.

If not otherwise specified, an argument sep = "," is added by default.

The argument row.names is always set to FALSE, a new column being added anyways (if possible).

Since this function pipes everything to write.table(), the argument file can also be a connection
open for writing, and "" indicates output to the console.

Author(s)

Adrian Dusa

See Also

The “R Data Import/Export” manual.

write.table

factorize Factorize Boolean expressions

Description

This function finds all combinations of common factors in a Boolean expression written in SOP -
sum of products. It makes use of the function simplify(), which uses the function minimize()
from package QCA). Users are highly encouraged to install and load that package, despite not being
present in the Imports field (due to circular dependency issues).

Usage

factorize(input, snames = "", noflevels = NULL, pos = FALSE, ...)

Arguments

input A string representing a SOP expression, or a minimization object of class "qca".

snames A string containing the sets’ names, separated by commas.

noflevels Numerical vector containing the number of levels for each set.

pos Logical, if possible factorize using product(s) of sums.

... Other arguments (mainly for backwards compatibility).

factorize 11

Details

Factorization is a process of finding common factors in a Boolean expression, written in SOP - sum
of products. Whenever possible, the factorization can also be performed in a POS - product of sums
form.

Conjunctions should preferably be indicated with a star * sign, but this is not necessary when
conditions have single letters or when the expression is expressed in multi-value notation.

The argument snames is only needed when conjunctions are not indicated by any sign, and the set
names have more than one letter each (see function translate() for more details).

The number of levels in noflevels is needed only when negating multivalue conditions, and it
should complement the snames argument.

If input is an object of class "qca" (the result of the function minimize() from package QCA), a
factorization is performed for each of the minimized solutions.

Value

A named list, each component containing all possible factorizations of the input expression(s),
found in the name(s).

Author(s)

Adrian Dusa

References

Ragin, C.C. (1987) The Comparative Method. Moving beyond qualitative and quantitative strate-
gies, Berkeley: University of California Press

See Also

translate

Examples

typical example with redundant conditions
factorize(a~b~cd + a~bc~d + a~bcd + abc~d)

results presented in alphabetical order
factorize(~one*two*~four + ~one*three + three*~four)

to preserve a certain order of the set names
factorize(~one*two*~four + ~one*three + three*~four,

snames = c(one, two, three, four))

using pos - products of sums
factorize(~a~c + ~ad + ~b~c + ~bd, pos = TRUE)

Not run:
make sure the package QCA is loaded
library(QCA)

12 finvert

using an object of class "qca" produced with function minimize()
in package QCA

pCVF <- minimize(CVF, outcome = "PROTEST", incl.cut = 0.8,
include = "?", use.letters = TRUE)

factorize(pCVF)

using an object of class "deMorgan" produced with negate()
factorize(negate(pCVF))

End(Not run)

finvert Inverts the values of a factor

Description

Useful function to invert the values from a categorical variable, for instance a Likert response scale.

Usage

finvert(x, levels = FALSE)

Arguments

x A categorical variable (a factor)
levels Logical, invert the levels as well

Value

A factor of the same length as the original one.

Author(s)

Adrian Dusa

Examples

words <- c("ini", "mini", "miny", "moe")
variable <- factor(words, levels = words)

inverts the value, preserving the levels
finvert(variable)

inverts both values and levels
finvert(variable, levels = TRUE)

frelevel 13

frelevel Modified relevel() function

Description

The base function relevel() accepts a single argument "ref", which can only be a scalar and not a
vector of values. frelevel() accepts more (even all) levels and reorders them.

Usage

frelevel(variable, levels)

Arguments

variable The categorical variable of interest

levels One or more levels of the factor, in the desired order

Value

A factor of the same length as the initial one.

Author(s)

Adrian Dusa

See Also

relevel

Examples

words <- c("ini", "mini", "miny", "moe")
variable <- factor(words, levels = words)

modify the order of the levels, keeping the order of the values
frelevel(variable, c("moe", "ini", "miny", "mini"))

14 getName

getName Get the name of the object being used in a function call

Description

This is a utility to be used inside a function.

Usage

getName(x, object = FALSE)

Arguments

x String, expression to be evaluated

object Logical, return the object’s name

Details

Within a function, the argument x can be anything and it is usually evaluated as an object.

This function should be used in conjunction with the base match.call(), to obtain the original
name of the object being served as an input, regardless of how it is being served.

A particular use case of this function relates to the cases when a variable within a data.frame is
used. The overall name of the object (the data frame) is irrelevant, as the real object of interest is
the variable.

Value

A character vector of length 1.

Author(s)

Adrian Dusa

Examples

foo <- function(x) {
funargs <- sapply(match.call(), deparse)[-1]
return(getName(funargs[1]))

}

dd <- data.frame(X = 1:5, Y = 1:5, Z = 1:5)

foo(dd)
dd

foo(dd$X)
X

hclr 15

foo(dd[["X"]])
X

foo(dd[[c("X", "Y")]])
X Y

foo(dd[, 1])
X

foo(dd[, 2:3])
Y Z

hclr Colors from the HCL spectrum

Description

Produces colors from the HCL (Hue Chroma Luminance) spectrum, based on the number of levels
from a factor.

Usage

hclr(x, starth = 25, c = 50, l = 75, alpha = 1, fixup = TRUE)

Arguments

x Number of factor levels, or the factor itself, or a frequency distribution from a
factor

starth Starting point for the hue (in the interval 0 - 360)

c chroma - color purity, small values produce dark and high values produce bright
colors

l color luminance - a number between 0 and 100

alpha color transparency, where 0 is a completely transparent color, up to 1

fixup logical, corrects the RGB values foto produce a realistic color

Details

Any value of h outside the interval 0 - 360 is constrained to this interval using modulo values. For
instance, 410 is constrained to 50 = 410

Value

The RBG code for the corresponding HCL colors.

Author(s)

Adrian Dusa

16 inside

Examples

aa <- sample(letters[1:5], 100, replace = TRUE)

hclr(aa)

same with
hclr(5)

or
hclr(table(aa))

inside Evaluate an Expression in a Data Environment

Description

Evaluate an R expression in an environment constructed from data.

Usage

inside(data, expr, ...)

S3 method for class 'list'
inside(data, expr, keepAttrs = TRUE, ...)

Arguments

data Data to use for constructing an environment a data frame or a list.

expr Expression to evaluate, often a “compound” expression, i.e., of the form

{
a <- somefun()
b <- otherfun()
.....
rm(unused1, temp)

}

keepAttrs For the list method of inside(), a logical specifying if the resulting list
should keep the attributes from data and have its names in the same order.
Often this is unneeded as the result is a named list anyway, and then keepAttrs
= FALSE is more efficient.

... Arguments to be passed to (future) methods.

Details

This is a modified version of the base R function within)), with exactly the same arguments and
functionality but only one fundamental difference: instead of returning a modified copy of the input
data, this function alters the data directly.

Interpret DNF/SOP expressions: compute, simplify, expand, translate 17

Author(s)

Adrian Dusa

Examples

mt <- mtcars
inside(mt, hwratio <- hp/wt)

dim(mtcars)

dim(mt)

Interpret DNF/SOP expressions: compute, simplify, expand, translate

Functions to interpret and manupulate a SOP/DNF expression

Description

These functions interpret an expression written in sum of products (SOP) or in canonical disjunctive
normal form (DNF), for both crisp and multivalue notations. The function compute() calculates
set membership scores based on a SOP expression applied to a calibrated data set (see function
calibrate() from package QCA), while the function translate() translates a SOP expression
into a matrix form.

The function simplify() transforms a SOP expression into a simpler equivalent, through a process
of Boolean minimization. The package uses the function minimize() from package QCA), so users
are highly encouraged to install and load that package, despite not being present in the Imports field
(due to circular dependency issues).

Function expand() performs a Quine expansion to the complete DNF, or a partial expansion to a
SOP expression with equally complex terms.

Function asSOP() returns a SOP expression from a POS (product of sums) expression. This func-
tion is different from the function invert(), which also negates each causal condition.

Function mvSOP() coerces an expression from crisp set notation to multi-value notation.

Usage

asSOP(expression = "", snames = "", noflevels = NULL)

compute(expression = "", data = NULL, separate = FALSE, ...)

expand(expression = "", snames = "", noflevels = NULL, partial = FALSE,
implicants = FALSE, ...)

mvSOP(expression = "", snames = "", data = NULL, keep.tilde = TRUE, ...)

simplify(expression = "", snames = "", noflevels = NULL, ...)

translate(expression = "", snames = "", noflevels = NULL, data = NULL, ...)

18 Interpret DNF/SOP expressions: compute, simplify, expand, translate

Arguments

expression String, a SOP expression.

data A dataset with binary cs, mv and fs data.

separate Logical, perform computations on individual, separate paths.

snames A string containing the sets’ names, separated by commas.

noflevels Numerical vector containing the number of levels for each set.

partial Logical, perform a partial Quine expansion.

implicants Logical, return an expanded matrix in the implicants space.

keep.tilde Logical, preserves the tilde sign when coercing a factor level

... Other arguments, mainly for backwards compatibility.

Details

An expression written in sum of products (SOP), is a "union of intersections", for example A*B +
B*~C. The disjunctive normal form (DNF) is also a sum of products, with the restriction that each
product has to contain all literals. The equivalent DNF expression is: A*B*~C + A*B*C + ~A*B*~C

The same expression can be written in multivalue notation: A[1]*B[1] + B[1]*C[0].

Expressions can contain multiple values for the same condition, separated by a comma. If B was a
multivalue causal condition, an expression could be: A[1] + B[1,2]*C[0].

Whether crisp or multivalue, expressions are treated as Boolean. In this last example, all values in
B equal to either 1 or 2 will be converted to 1, and the rest of the (multi)values will be converted to
0.

Negating a multivalue condition requires a known number of levels (see examples below). Intersec-
tions between multiple levels of the same condition are possible. For a causal condition with 3 levels
(0, 1 and 2) the following expression ~A[0,2]*A[1,2] is equivalent with A[1], while A[0]*A[1]
results in the empty set.

The number of levels, as well as the set names can be automatically detected from a dataset via the
argument data. When specified, arguments snames and noflevels have precedence over data.

The product operator * should always be used, but it can be omitted when the data is multivalue
(where product terms are separated by curly brackets), and/or when the set names are single letters
(for example AD + B~C), and/or when the set names are provided via the argument snames.

When expressions are simplified, their simplest equivalent can result in the empty set, if the condi-
tions cancel each other out.

The function mvSOP() assumes binary crisp conditions in the expression, except for categorical data
used as multi-value conditions. The factor levels are read directly from the data, and they should be
unique accross all conditions.

Value

For the function compute(), a vector of set membership values.

For function simplify(), a character expression.

For the function translate(), a matrix containing the implicants on the rows and the set names on
the columns, with the following codes:

Interpret DNF/SOP expressions: compute, simplify, expand, translate 19

0 absence of a causal condition
1 presence of a causal condition

-1 causal condition was eliminated

The matrix was also assigned a class "translate", to avoid printing the -1 codes when signaling a
minimized condition. The mode of this matrix is character, to allow printing multiple levels in the
same cell, such as "1,2".

For function expand(), a character expression or a matrix of implicants.

Author(s)

Adrian Dusa

References

Ragin, C.C. (1987) The Comparative Method: Moving beyond Qualitative and Quantitative Strate-
gies. Berkeley: University of California Press.

Examples

for compute()
Not run:
make sure the package QCA is loaded
library(QCA)
compute(DEV*~IND + URB*STB, data = LF)

calculating individual paths
compute(DEV*~IND + URB*STB, data = LF, separate = TRUE)

End(Not run)

for simplify(), also make sure the package QCA is loaded
simplify(asSOP("(A + B)(A + ~B)")) # result is "A"

works even without the quotes
simplify(asSOP((A + B)(A + ~B))) # result is "A"

but to avoid confusion POS expressions are more clear when quoted
to force a certain order of the set names
simplify("(URB + LIT*~DEV)(~LIT + ~DEV)", snames = c(DEV, URB, LIT))

multilevel conditions can also be specified (and negated)
simplify("(A[1] + ~B[0])(B[1] + C[0])", snames = c(A, B, C), noflevels = c(2, 3, 2))

Ragin's (1987) book presents the equation E = SG + LW as the result
of the Boolean minimization for the ethnic political mobilization.

20 Interpret DNF/SOP expressions: compute, simplify, expand, translate

intersecting the reactive ethnicity perspective (R = ~L~W)
with the equation E (page 144)

simplify("~L~W(SG + LW)", snames = c(S, L, W, G))

[1] "S~L~WG"

resources for size and wealth (C = SW) with E (page 145)
simplify("SW(SG + LW)", snames = c(S, L, W, G))

[1] "SWG + SLW"

and factorized
factorize(simplify("SW(SG + LW)", snames = c(S, L, W, G)))

F1: SW(G + L)

developmental perspective (D = Lg) and E (page 146)
simplify("L~G(SG + LW)", snames = c(S, L, W, G))

[1] "LW~G"

subnations that exhibit ethnic political mobilization (E) but were
not hypothesized by any of the three theories (page 147)
~H = ~(~L~W + SW + L~G) = GL~S + GL~W + G~SW + ~L~SW

simplify("(GL~S + GL~W + G~SW + ~L~SW)(SG + LW)", snames = c(S, L, W, G))

for translate()
translate(A + B*C)

same thing in multivalue notation
translate(A[1] + B[1]*C[1])

tilde as a standard negation (note the condition "b"!)
translate(~A + b*C)

and even for multivalue variables
in multivalue notation, the product sign * is redundant
translate(C[1] + T[2] + T[1]*V[0] + C[0])

negation of multivalue sets requires the number of levels
translate(~A[1] + ~B[0]*C[1], snames = c(A, B, C), noflevels = c(2, 2, 2))

multiple values can be specified
translate(C[1] + T[1,2] + T[1]*V[0] + C[0])

or even negated

intersection 21

translate(C[1] + ~T[1,2] + T[1]*V[0] + C[0], snames = c(C, T, V), noflevels = c(2,3,2))

if the expression does not contain the product sign *
snames are required to complete the translation
translate(AaBb + ~CcDd, snames = c(Aa, Bb, Cc, Dd))

to print _all_ codes from the standard output matrix
(obj <- translate(A + ~B*C))
print(obj, original = TRUE) # also prints the -1 code

for expand()
expand(~AB + B~C)

S1: ~AB~C + ~ABC + AB~C

expand(~AB + B~C, snames = c(A, B, C, D))

S1: ~AB~C~D + ~AB~CD + ~ABC~D + ~ABCD + AB~C~D + AB~CD

In implicants form:
expand(~AB + B~C, snames = c(A, B, C, D), implicants = TRUE)

A B C D
[1,] 1 2 1 1 ~AB~C~D
[2,] 1 2 1 2 ~AB~CD
[3,] 1 2 2 1 ~ABC~D
[4,] 1 2 2 2 ~ABCD
[5,] 2 2 1 1 AB~C~D
[6,] 2 2 1 2 AB~CD

intersection Intersect expressions

Description

This function takes two or more SOP expressions (combinations of conjunctions and disjunctions)
or even entire minimization objects, and finds their intersection.

Usage

intersection(..., snames = "", noflevels)

Arguments

... One or more expressions, combined with / or minimization objects of class
"QCA_min".

snames A string containing the sets’ names, separated by commas.
noflevels Numerical vector containing the number of levels for each set.

22 intersection

Details

The initial aim of this function was to provide a software implementation of the intersection exam-
ples presented by Ragin (1987: 144-147). That type of example can also be performed with the
function simplify(), while this function is now mainly used in conjunction with the modelFit()
function from package QCA, to assess the intersection between theory and a QCA model.

Irrespective of the input type (character expressions and / or minimiation objects), this function is
now a wrapper to the main simplify() function (which only accepts character expressions).

It can deal with any kind of expressions, but multivalent crisp conditions need additional informa-
tion about their number of levels, via the argument noflevels.

The expressions can be formulated in terms of either lower case - upper case notation for the absence
and the presence of the causal condition, or use the tilde notation (see examples below). Usage of
either of these is automatically detected, as long as all expressions use the same notation.

If the snames argument is provided, the result is sorted according to the order of the causal con-
ditions (set names) in the original dataset, otherwise it sorts the causal conditions in alphabetical
order.

For minimzation objects of class "QCA_min", the number of levels, and the set names are automati-
cally detected.

Author(s)

Adrian Dusa

References

Ragin, Charles C. 1987. The Comparative Method: Moving beyond Qualitative and Quantitative
Strategies. Berkeley: University of California Press.

Examples

using minimization objects
Not run:
library(QCA) # if not already loaded
ttLF <- truthTable(LF, outcome = "SURV", incl.cut = 0.8)
pLF <- minimize(ttLF, include = "?")

for example the intersection between the parsimonious model and
a theoretical expectation
intersection(pLF, DEV*STB)

negating the model
intersection(negate(pLF), DEV*STB)

End(Not run)

in Ragin's (1987) book, the equation E = SG + LW is the result

Negate DNF/SOP expressions 23

of the Boolean minimization for the ethnic political mobilization.

intersecting the reactive ethnicity perspective (R = lw)
with the equation E (page 144)
intersection(~L~W, SG + LW, snames = c(S, L, W, G))

resources for size and wealth (C = SW) with E (page 145)
intersection(SW, SG + LW, snames = c(S, L, W, G))

and factorized
factorize(intersection(SW, SG + LW, snames = c(S, L, W, G)))

developmental perspective (D = L~G) and E (page 146)
intersection(L~G, SG + LW, snames = c(S, L, W, G))

subnations that exhibit ethic political mobilization (E) but were
not hypothesized by any of the three theories (page 147)
~H = ~(~L~W + SW + L~G)
intersection(negate(~L~W + SW + L~G), SG + LW, snames = c(S, L, W, G))

Negate DNF/SOP expressions

Negate Boolean expressions

Description

Functions to negate a DNF/SOP expression, or to invert a SOP to a negated POS or a POS to a
negated SOP.

Usage

negate(input, snames = "", noflevels, simplify = TRUE, ...)

invert(input, snames = "", noflevels)

Arguments

input A string representing a SOP expression, or a minimization object of class "QCA_min".

snames A string containing the sets’ names, separated by commas.

noflevels Numerical vector containing the number of levels for each set.

simplify Logical, allow users to choose between the raw negation or its simplest form.

... Other arguments (mainly for backwards compatibility).

24 Negate DNF/SOP expressions

Details

In Boolean algebra, there are two transformation rules named after the British mathematician Au-
gustus De Morgan. These rules state that:

1. The complement of the union of two sets is the intersection of their complements.

2. The complement of the intersection of two sets is the union of their complements.

In "normal" language, these would be written as:

1. not (A and B) = (not A) or (not B)

2. not (A or B) = (not A) and (not B)

Based on these two laws, any Boolean expression written in disjunctive normal form can be trans-
formed into its negation.

It is also possible to negate all models and solutions from the result of a Boolean minimization
from function minimize() in package QCA. The resulting object, of class "qca", is automatically
recognised by this function.

In a SOP expression, the products should normally be split by using a star * sign, otherwise the
sets’ names will be considered the individual letters in alphabetical order, unless they are specified
via snames.

To negate multilevel expressions, the argument noflevels is required.

It is entirely possible to obtain multiple negations of a single expression, since the result of the
negation is passed to function simplify().

Function invert() simply transforms an expression from a sum of products (SOP) to a negated
product of sums (POS), and the other way round.

Value

A character vector when the input is a SOP expresison, or a named list for minimization input
objects, each component containing all possible negations of the model(s).

Author(s)

Adrian Dusa

References

Ragin, Charles C. 1987. The Comparative Method: Moving beyond Qualitative and Quantitative
Strategies. Berkeley: University of California Press.

See Also

minimize, simplify

Examples

example from Ragin (1987, p.99)
negate(AC + B~C, simplify = FALSE)

the simplified, logically equivalent negation

Number equality 25

negate(AC + B~C)

with different intersection operators
negate(AB*EF + ~CD*EF)

invert to POS
invert(a*b + ~c*d)

Not run:
using an object of class "qca" produced with minimize()
from package QCA
library(QCA)
cLC <- minimize(LC, outcome = SURV)

negate(cLC)

parsimonious solution
pLC <- minimize(LC, outcome = SURV, include = "?")

negate(pLC)

End(Not run)

Number equality Check difference and / or (in)equality of numbers

Description

Check if one number is greater / lower than (or equal to) another.

Usage

agtb(a, b, bincat)
altb(a, b, bincat)
agteb(a, b, bincat)
alteb(a, b, bincat)
aeqb(a, b, bincat)
aneqb(a, b, bincat)

Arguments

a Numerical vector

b Numerical vector

bincat Binary categorization values, an atomic vector of length 2

26 numdec

Details

Not all numbers (especially the decimal ones) can be represented exactly in floating point arithmetic,
and their arithmetic may not give the normal expected result.

This set of functions check for the in(equality) between two numerical vectors a and b, with the
following name convention:

gt means “greater than”

lt means a “lower than” b

gte means a “greater than or equal to” b

lte means a “lower than or equal to” b

eq means a “equal to” b

neq means a “not equal to” b

The argument values is useful to replace the TRUE / FALSE values with custom categories.

Author(s)

Adrian Dusa

References

Goldberg, David (1991) "What Every Computer Scientist Should Know About Floating-point Arith-
metic", ACM Computing Surveys vol.23, no.1, pp.5-48, doi:10.1145/103162.103163

numdec Count number of decimals

Description

Calculates the (maximum) number of decimals in a possibly numeric vector.

Usage

numdec(x, each = FALSE, na.rm = TRUE, maxdec = 15)

Arguments

x A vector of values

each Logical, return the result for each value in the vector

na.rm Logical, ignore missing values

maxdec Maximal number of decimals to count

Author(s)

Adrian Dusa

https://doi.org/10.1145/103162.103163

Numeric testing and coercion 27

Examples

x <- c(12, 12.3, 12.34)

numdec(x) # 2

numdec(x, each = TRUE) # 0, 1, 2

x <- c("-.1", " 2.75 ", "12", "B", NA)

numdec(x) # 2

numdec(x, each = TRUE) # 1, 2, 0, NA, NA

Numeric testing and coercion

Numeric vectors

Description

Coerces objects to class "numeric", and checks if an object is numeric.

Usage

asNumeric(x, ...)
possibleNumeric(x, each = FALSE)
wholeNumeric(x, each = FALSE)

Arguments

x A vector of values

each Logical, return the result for each value in the vector

... Other arguments to be passed for class based methods

Details

Unlike the function as.numeric() from the base package, the function asNumeric() coerces to
numeric without a warning if any values are not numeric. All such values are considered NA
missing.

This is a generic function, with specific class methods for factors and objects of class “declared”.
The usual way of coercing factors to numeric is meaningless, converting the inner storage numbers.
The class method of this particular function coerces the levels to numeric, via the default activated
argument levels.

For objects of class “declared”, a similar argument called na_values is by default activated to
coerce the declared missing values to numeric.

The function possibleNumeric() tests if the values in a vector are possibly numeric, irrespective
of their storing as character or numbers. In the case of factors, it tests its levels representation.

28 overwrite

Function wholeNumeric() tests if numbers in a vector are whole (round) numbers. Whole numbers
are different from “integer” numbers (which have special memory representation), and consequently
the function is.integer() tests something different, how numbers are stored in memory (see the
description of function double() for more details).

The function

Author(s)

Adrian Dusa

See Also

numeric, integer, double

Examples

x <- c("-.1", " 2.7 ", "B")
asNumeric(x) # no warning

f <- factor(c(3, 2, "a"))

asNumeric(f)

asNumeric(f, levels = FALSE)

possibleNumeric(x) # FALSE

possibleNumeric(x, each = TRUE) # TRUE TRUE FALSE

possibleNumeric(c("1", 2, 3)) # TRUE

is.integer(1) # FALSE

Signaling an integer in R
is.integer(1L) # TRUE

wholeNumeric(1) # TRUE

wholeNumeric(c(1, 1.1), each = TRUE) # TRUE FALSE

overwrite Overwrite an object in a given environment.

Description

Utility function to overwrite an object, and bypass the assignment operator.

Usage

overwrite(objname, content, environment)

permutations 29

Arguments

objname Character, the name of the object to overwrite.

content An R object

environment The environment where to perform the overwrite procedure.

Value

This function does not return anything.

Author(s)

Adrian Dusa

Examples

foo <- function(object, x) {
objname <- deparse(substitute(object))
object <- x
overwrite(objname, object, parent.frame())

}

bar <- 1
foo(bar, 2)

bar
[1] 2

bar <- list(A = bar)
foo(bar$A, 3)

bar

permutations Calculates the permutations of a vector

Description

Generates all possible permutations of elements from a vector.

Usage

permutations(x)

Arguments

x Any kind of vector.

30 recode

Author(s)

Adrian Dusa

Examples

permutations(1:3)

recode Recode a variable

Description

Recodes a vector (numeric, character or factor) according to a set of rules. It is similar to the
function recode() from package car, but more flexible. It also has similarities with the function
findInterval() from package base.

Usage

recode(x, rules = NULL, cut = NULL, values = NULL, ...)

Arguments

x A vector of mode numeric, character or factor.

rules Character string or a vector of character strings for recoding specifications.

cut A vector of one or more unique cut points.

values A vector of output values.

... Other parameters, for compatibility with other functions such as recode() in
package car but also factor() in package base

Details

Similar to the recode() function in package car, the recoding rules are separated by semicolons,
of the form input = output, and allow for:

a single value 1 = 0
a range of values 2:5 = 1

a set of values c(6,7,10) = 2
else everything that is not covered by the previously specified rules

Contrary to the recode() function in package car, this function allows the : sequence operator
(even for factors), so that a rule such as c(1,3,5:7), or c(a,d,f:h) would be valid.

Actually, since all rules are specified in a string, it really doesn’t matter if the c() function is used
or not. For compatibility reasons it accepts it, but a more simple way to specify a set of rules is
"1,3,5:7=A; else=B"

recode 31

Special values lo and hi may also appear in the range of values, while else can be used with
else=copy to copy all values which were not specified in the recoding rules.

In the package car, a character output would have to be quoted, like "1:2=’A’" but that is
not mandatory in this function, "1:2=A" would do just as well. Output values such as "NA" or
"missing" are converted to NA.

Another difference from the car package: the output is not automatically converted to a fac-
tor even if the original variable is a factor. That option is left to the user’s decision to specify
as.factor.result, defaulted to FALSE.

A capital difference is the treatment of the values not present in the recoding rules. By default,
package car copies all those values in the new object, whereas in this package the default values are
NA and new values are added only if they are found in the rules. Users can choose to copy all other
values not present in the recoding rules, by specifically adding else=copy in the rules.

Since the two functions have the same name, it is possible that users loading both packages to use
one instead of the other (depending which package is loaded first). In order to preserve functionality
and minimize possible namespace collisions with package car, special efforts have been invested to
ensure perfect compatibility with the other recode() function (plus more).

The argument ... allows for more arguments specific to the car package, such as as.factor.result,
as.numeric.result. In addition, it also accepts levels, labels and ordered specific to function
factor() in package base. When using the arguments levels and / or labels, the output will
automatically be coerced to a factor, unless the argument values is used, as indicated below.

Blank spaces outside category labels are ignored, see the last example.

It is possible to use recode() in a similar way to function cut(), by specifying a vector of cut
points. For any number of such c cut ploints, there should be c + 1 values. If not otherwise specified,
the argument values is automatically constructed as a sequence of numbers from 1 to c + 1.

Unlike the function cut(), arguments such as include.lowest or right are not necessary because
the final outcome can be changed by tweaking the cut values.

If both arguments values and labels are provided, the labels are going to be stored as an attribute.

Author(s)

Adrian Dusa

Examples

x <- rep(1:3, 3)
[1] 1 2 3 1 2 3 1 2 3

recode(x, "1:2 = A; else = B")
[1] "A" "A" "B" "A" "A" "B" "A" "A" "B"

recode(x, "1:2 = 0; else = copy")
[1] 0 0 3 0 0 3 0 0 3

set.seed(1234)
x <- sample(18:90, 20, replace = TRUE)
[1] 45 39 26 22 55 33 21 87 31 73 79 21 21 38 57 73 84 22 83 64

32 recode

recode(x, cut = "35, 55")
[1] 2 2 1 1 2 1 1 3 1 3 3 1 1 2 3 3 3 1 3 3

set.seed(1234)
x <- factor(sample(letters[1:10], 20, replace = TRUE),

levels = letters[1:10])
[1] j f e i e f d b g f j f d h d d e h d h
Levels: a b c d e f g h i j

recode(x, "b:d = 1; g:hi = 2; else = NA") # note the "hi" special value
[1] 2 NA NA 2 NA NA 1 1 2 NA 2 NA 1 2 1 1 NA 2 1 2

recode(x, "a, c:f = A; g:hi = B; else = C", labels = "A, B, C")
[1] B A A B A A A C B A B A A B A A A B A B
Levels: A B C

recode(x, "a, c:f = 1; g:hi = 2; else = 3",
labels = c("one", "two", "three"), ordered = TRUE)

[1] two one one two one one one three two one
[11] two one one two one one one two one two
Levels: one < two < three

set.seed(1234)
categories <- c("An", "example", "that has", "spaces")
x <- factor(sample(categories, 20, replace = TRUE),

levels = categories, ordered = TRUE)
sort(x)
[1] An An An example example example example
[8] example example example example that has that has that has
[15] spaces spaces spaces spaces spaces spaces
Levels: An < example < that has < spaces

recode(sort(x), "An : that has = 1; spaces = 2")
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

single quotes work, but are not necessary
recode(sort(x), "An : 'that has' = 1; spaces = 2")
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

same using cut values
recode(sort(x), cut = "that has")
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

modifying the output values
recode(sort(x), cut = "that has", values = 0:1)
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

more treatment of "else" values
x <- 10:20

recoding rules don't overlap all existing values, the rest are empty
recode(x, "8:15 = 1")

recreate 33

[1] 1 1 1 1 1 1 NA NA NA NA NA

all other values copied
recode(x, "8:15 = 1; else = copy")
[1] 1 1 1 1 1 1 16 17 18 19 20

recreate Facilitate expression substitution

Description

Utility function based on substitute(), to recover an unquoted input.

Usage

recreate(x, snames = NULL, ...)

Arguments

x A substituted input.

snames A character string containing set names.

... Other arguments, mainly for internal use.

Details

This function is especially useful when users have to provide lots of quoted inputs, such as the name
of the columns from a data frame to be considered for a particular function.

This is actually one of the main uses of the base function substitute(), but here it can be employed
to also detect SOP (sum of products) expressions, explained for instance in function translate().

Such SOP expressions are usually used in contexts of sufficieny and necessity, which are indicated
with the usual signs -> and <-. These are both allowed by the R parser, indicating standard as-
signment. Due to the R’s internal parsing system, a sufficient expression using -> is automatically
flipped to a necessity statement <- with reversed LHS to RHS, but this function is able to determine
what is the expression and what is the output.

The other necessity code <= is also recognized, but the equivalent sufficiency code => is not allowed
in unquoted expressions.

Value

A quoted, equivalent expression or a substituted object.

Author(s)

Adrian Dusa

34 replaceText

See Also

substitute, simplify

Examples

recreate(substitute(A + ~B*C))

foo <- function(x, ...) recreate(substitute(list(...)))

foo(arg1 = 3, arg2 = A + ~B*C)

df <- data.frame(A = 1, B = 2, C = 3, Y = 4)

substitute from the global environment
the result is the builtin C() function
res <- recreate(substitute(C))

is.function(res) # TRUE

search first within the column name space from df
recreate(substitute(C), colnames(df))
"C"

necessity well recognized
recreate(substitute(A <- B))

but sufficiency is flipped
recreate(substitute(A -> B))

more complex SOP expressions are still recovered
recreate(substitute(A + ~B*C -> Y))

replaceText Replace text in a string

Description

Provides an improved method to replace strings, compared to function gsub() in package base.

Usage

replaceText(
expression = "", target = "", replacement = "", protect = "",
boolean = FALSE, ...)

replaceText 35

Arguments

expression Character string, usually a SOP - sum of products expression.

target Character vector or a string containing the text to be replaced.

replacement Character vector or a string containing the text to replace with.

protect Character vector or a string containing the text to protect.

boolean Treat characters in a boolean way, using upper and lower case letters.

... Other arguments, from and to other functions.

Details

If the input expression is "J*JSR", and the task is to replace "J" with "A" and "JSR" with "B",
function gsub() is not very useful since the letter "J" is found in multiple places, including the
second target.

This function finds the exact location(s) of each target in the input string, starting with those having
the largest number of characters, making sure the locations are unique. For instance, the target
"JSR" is found on the location from 3 to 5, while the target "J" is is found on two locations 1 and 3,
but 3 was already identified in the previously found location for the larger target.

In addition, this function can also deal with target strings containing spaces.

Value

The original string, replacing the target text with its replacement.

Author(s)

Adrian Dusa

Examples

replaceText("J*JSR", "J, JSR", "A, B")

same output, on input expresions containing spaces
replaceText("J*JS R", "J, JS R", "A, B")

works even with Boolean expressions, where lower case
letters signal the absence of the causal condition
replaceText("DEV + urb*LIT", "DEV, URB, LIT", "A, B, C", boolean = TRUE)

36 Tilde operations

scan.clipboard Cross platform scan/write clipboard

Description

Functions to read and write to the system’s clipboard, for copy/paste operations.

Usage

scan.clipboard(...)
write.clipboard(x)

Arguments

x Object to be written to the clipboard

... Same arguments that are used in the base function scan

Author(s)

Adrian Dusa

Tilde operations Tilde operations

Description

Checks and changes expressions containing set negations using a tilde.

Usage

hastilde(x)
notilde(x)
tilde1st(x)

Arguments

x A vector of values

tryCatchWEM 37

Details

Boolean expressions can be negated in various ways. For binary crisp and fuzzy sets, one of the
most straightforward ways to invert the set membership scores is to subtract them from 1. This is
both possible using R vectors and also often used to signal a negation in SOP (sum of products)
expressions.

Some other times, SOP expressions can signal a set negation (also known as the absence of a causal
condition) by using lower case letters, while upper case letters are used to signal the presence of a
causal condition. SOP expressions also use a tilde to signal a set negation, immediately preceding
the set name.

This set of functions detect when and if a set present in a SOP expression contains a tilde (function
hastilde), whether the entire expression begins with a tilde (function tilde1st).

Author(s)

Adrian Dusa

Examples

hastilde("~A")

tryCatchWEM Try functions to capture warnings, errors and messages.

Description

This function combines the base functions tryCatch() and withCallingHandlers() for the specific
purpose of capturing not only errors and warnings but messages as well.

Usage

tryCatchWEM(expr, capture = FALSE)

Arguments

expr Expression to be evaluated.

capture Logical, capture the visible output.

Details

In some situations it might be important not only to test a function, but also to capture everything
that is written in the R console, be it an error, a warning or simply a message.

For instance package QCA (version 3.4) has a Graphical User Interface that simulates an R console
embedded into a web based shiny app.

It is not intended to replace function tryCatch() in any way, especially not evaluating an expression
before returning or exiting, it simply captures everything that is printed on the console (the visible
output).

38 using

Value

A list, if anything would be printed on the screen, or an empty (NULL) object otherwise.

Author(s)

Adrian Dusa

using Evaluate an expression in a data environment

Description

A function almost identical to the base function with(), but allowing to evaluate the expression in
every subset of a split file.

Usage

using(data, expr, split.by = NULL, ...)

Arguments

data A data frame.

expr Expression to evaluate

split.by A factor variable from the data, or a declared/labelled variable

... Other internal arguments.

Value

A list of results, or a matrix if each separate result is a vector.

Author(s)

Adrian Dusa

Examples

set.seed(123)
DF <- data.frame(

Area = factor(sample(c("Rural", "Urban"), 123, replace = TRUE)),
Gender = factor(sample(c("Female", "Male"), 123, replace = TRUE)),
Age = sample(18:90, 123, replace = TRUE),
Children = sample(0:5, 123, replace = TRUE)

)

table of frequencies for Gender
table(DF$Gender)

using 39

same with
using(DF, table(Gender))

same, but split by Area
using(DF, table(Gender), split.by = Area)

calculate the mean age by gender
using(DF, mean(Age), split.by = Gender)

same, but select cases from the urban area
using(subset(DF, Area == "Urban"), mean(Age), split.by = Gender)

mean age by gender and area
using(DF, mean(Age), split.by = Area & Gender)

same with
using(DF, mean(Age), split.by = c(Area, Gender))

average number of children by Area
using(DF, mean(Children), split.by = Area)

frequency tables by Area
using(DF, table(Children), split.by = Area)

Index

∗ functions
.rda functions: listRDA, objRDA, 2
betweenQuotes, 4
Brackets, 4
change, 6
coerceMode, 7
combnk, 8
dimnames, 9
export, 9
factorize, 10
frelevel, 13
getName, 14
inside, 16
Interpret DNF/SOP expressions:

compute, simplify, expand,
translate, 17

intersection, 21
Negate DNF/SOP expressions, 23
Number equality, 25
numdec, 26
Numeric testing and coercion, 27
overwrite, 28
permutations, 29
recode, 30
recreate, 33
replaceText, 34
scan.clipboard, 36
Tilde operations, 36
tryCatchWEM, 37
using, 38

∗ misc
finvert, 12
hclr, 15

∗ package
About the admisc package, 3

.rda functions: listRDA, objRDA, 2

About the admisc package, 3
admisc-package (About the admisc

package), 3

aeqb (Number equality), 25
agtb (Number equality), 25
agteb (Number equality), 25
altb (Number equality), 25
alteb (Number equality), 25
aneqb (Number equality), 25
asNumeric (Numeric testing and

coercion), 27
asSOP (Interpret DNF/SOP expressions:

compute, simplify, expand,
translate), 17

attributes, 16

betweenBrackets (Brackets), 4
betweenQuotes, 4
Brackets, 4

calibrate, 17
change, 6
coerceMode, 7
combnk, 8
compute (Interpret DNF/SOP

expressions: compute,
simplify, expand, translate),
17

curlyBrackets (Brackets), 4

deMorgan (Negate DNF/SOP expressions),
23

dimnames, 9
double, 28

expand (Interpret DNF/SOP expressions:
compute, simplify, expand,
translate), 17

export, 9

factor, 30, 31
factorize, 10
findInterval, 30
finvert, 12

40

INDEX 41

frelevel, 13

getName, 14

hastilde (Tilde operations), 36
hclr, 15

inside, 16
insideBrackets (Brackets), 4
integer, 28
Interpret DNF/SOP expressions:

compute, simplify, expand,
translate, 17

intersection, 21
invert (Negate DNF/SOP expressions), 23

list, 16
listRDA (.rda functions: listRDA,

objRDA), 2
load, 3
logical, 16

minimize, 10, 11, 17, 24
modelFit, 22
mvSOP (Interpret DNF/SOP expressions:

compute, simplify, expand,
translate), 17

names, 16
negate (Negate DNF/SOP expressions), 23
Negate DNF/SOP expressions, 23
notilde (Tilde operations), 36
Number equality, 25
numdec, 26
numeric, 28
Numeric testing and coercion, 27

objRDA (.rda functions: listRDA,
objRDA), 2

outsideBrackets (Brackets), 4
overwrite, 28

permutations, 29
possibleNumeric (Numeric testing and

coercion), 27

recode, 30
recreate, 33
relevel, 13
replaceText, 34

roundBrackets (Brackets), 4

save, 3
scan.clipboard, 36
setColnames (dimnames), 9
setDimnames (dimnames), 9
setRownames (dimnames), 9
simplify, 10, 24, 34
simplify (Interpret DNF/SOP

expressions: compute,
simplify, expand, translate),
17

sop (Interpret DNF/SOP expressions:
compute, simplify, expand,
translate), 17

squareBrackets (Brackets), 4
substitute, 33, 34

Tilde operations, 36
tilde1st (Tilde operations), 36
translate, 11, 33
translate (Interpret DNF/SOP

expressions: compute,
simplify, expand, translate),
17

tryCatchWEM, 37

using, 38

wholeNumeric (Numeric testing and
coercion), 27

write.clipboard (scan.clipboard), 36
write.table, 9, 10

	.rda functions: listRDA, objRDA
	About the admisc package
	betweenQuotes
	Brackets
	change
	coerceMode
	combnk
	dimnames
	export
	factorize
	finvert
	frelevel
	getName
	hclr
	inside
	Interpret DNF/SOP expressions: compute, simplify, expand, translate
	intersection
	Negate DNF/SOP expressions
	Number equality
	numdec
	Numeric testing and coercion
	overwrite
	permutations
	recode
	recreate
	replaceText
	scan.clipboard
	Tilde operations
	tryCatchWEM
	using
	Index

